
�� ��
SSTI

Handbook

www.securityboat.net

��
www.securityboat.net

Basics of SSTI

• Templates

• Template engines

SSTI

Why SSTI arises

Steps to check for SSTI

Detection

• Exploring different contexts of SSTI in web applications

Identification of Template Engine:

Exploitation

• Exploitation in Jinja2

• Method Resolution Order

• Achieving RCE

• RCE using globals and init method of current context object:

• RCE using mro and base:

• SSTI in Smarty (PHP)

• SSTI in Ruby ERB

Tools

Labs

Best Practices for Prevention

Conclusion

References

Table of contents

www.securityboat.net

Basics of SSTI

Template engines:

Before diving into Server-Side Template Injection (SSTI), it's important to understand the
basics of web application templates and template engines.

Templates:
Templates are used to separate the presentation layer from the business logic and data
processing layer in web development. Templates work by defining the structure and
layout of a web page, including where dynamic data will be displayed. When a user inputs
information or data is generated through processing, the server sends the dynamic data
back to the user's browser and populates the defined fields in the template with the rele-
vant information. This allows for a consistent and user-friendly presentation of dynamic
content, without the need for manual HTML coding for every individual web page.

Template engines are designed to simplify the process of generating web pages by com-
bining fixed templates with dynamic data. A template engine allows developers to create
templates, written in a template language, that define the structure and layout of a web
page. These templates can include placeholders or variables that will be replaced with
actual data at runtime. The template engine then generates the final HTML output that is
sent to the user's browser.

www.securityboat.net

Using a template engine provides several advantages over manually generating HTML
pages. It allows developers to separate the server-side application logic from the
client-side presentation code, making it easier to maintain and update the application.
Additionally, template engines offer more advanced features such as calling functions and
methods, looping over variables, and performing arithmetic operations. This makes it
easier to create dynamic and responsive web pages that can handle a wide variety of user
inputs. The ability that allows to perform such complex tasks in context of templates also
introduces ways to an attacker to tamper with the server side logic.

Example of template Engine:
Jinja2 is a popular template engine for Python
web frameworks, such as Flask and Django. It
offers a straightforward and adaptable syntax
for building templates and supports many
features like template inheritance, filters, and
macros.

In code snippet, we have defined an index.ht-
ml template and based on a simple Flask app
that renders an index.html template. The
template uses Jinja2 template engine to
display the user's name.

www.securityboat.net

Server-Side Template Injection

SSTI, or Server-Side Template Injection, is a vulnerability that can happen when user input
in a web application using templates is not properly sanitized or validated.

SSTI attack occurs when an attacker injects malicious code into a template, which is then
executed on the server side. This can result in the compromise of sensitive information,
unauthorized execution of code, or even complete server takeover by an attacker.

A server-side template injection (SSTI) is a security vulnerability that occurs when an attacker is
able to inject malicious code into a template using built-in template language constructs. The
injected code is then executed on the server-side, which can lead to the compromise of sensitive
data or the entire system.

Why SSTI arises:

{{9*9}}

In this example, attacker is using the malicious input to execute arbitrary code on the server-side,
which lists the contents of the current directory.

SSTI vulnerabilities are often caused by inadequate input validation. In web applications that allow user input
to generate responses, it is crucial to validate and sanitize the input data prior to use. The ability for an attack-
er to insert template code into the input field depends on how well user input is verified or sanitized.

For instance, let's consider a web application that uses the Jinja2 template engine and allows users to search
for products. The search query is used in a template to display the results. However, the application does not
properly validate or sanitize the search query, which allows an attacker to inject malicious code into the search
field. Here in below screenshot attacker can insert malicious payload in search field.

Malicious input

1. Improper Input Validation

www.securityboat.net

In above example, an attacker can upload a malicious template file with Jinja2 code that allows
them to execute arbitrary code on the server-side:

2. Insecure template configuration:
A web application might occasionally let users define their own template files. An attacker might be able to insert
malicious code into the template and have it run on the server if these template files are not adequately secured.

For instance, let's consider a web application that allows users to upload their own templates. The application
stores the templates in a directory called "templates" and uses the Jinja2 template engine to render the
templates:

www.securityboat.net

3. Third party libraries:
SSTI vulnerabilities may exist in several third-party libraries used in web applications. Attackers might be
able to inject malicious code if these libraries are not patched or upgraded to the most recent version.

For instance, a well-known third-party library named Flask-RESTful was discovered to contain an SSTI
vulnerability in version 0.3.5. Due to this flaw, an attacker may inject Jinja2 template code into a request
for a Flask-RESTful API, which the server would then execute.

4. Developer error code:
SSTI flaws can also result from developer fault, such as improper input escaping or the usage of an inse-
cure templating engine.

Consider a web application that employs an unsafe template engine and permits arbitrary code execu-
tion. A server attacker could use this vulnerability to execute arbitrary code if the developer is unaware of
the dangers this engine poses and doesn't take the necessary security precautions.

Steps to check for SSTI:
DETECT

IDENTIFY

EXPLOIT READ

EXPLORE

ATTACK

www.securityboat.net

Here in the code snippet, the username is being passed in the template in plain text form which
means we can embed our own python expression in the username field which will be evaluated
by the template engine.

In this case, we don't need to include the expression tags in our payload, so we can simply use
"7*7" as it is passed directly into the expression tags.
However, there may be scenarios where we need to break out of templating syntax by using char-
acters like "}", "}}", "$>", depending on the underlying templating engine. If an error is thrown, it
will be easier to identify the template engine used by the application.

Detection:

Exploring different contexts of SSTI in web applications:

The first step in detecting a Server-Side Template Injection (SSTI) attack is to fuzz the input field using a
polyglot such as ${{<%[%'"}}%\ to trigger an error that discloses information about the template engine.
By comparing the regular output with the output generated by injecting the polyglot payload into the
input field, we can identify any differences.

If an error is thrown, we can also determine the underlying template engine. However, in some cases, we
may not receive the expected errors or reflections, or there may be anomalies between the responses for
the original request and injected request. Therefore, it is important to carefully analyze the responses to
identify any signs of SSTI vulnerability.

Plaintext Context:

Code Context:

In the plain text context, user input is directly concatenated with the content in
the template. For instance, in a Jinja2 template, a username can be passed in
plain text format, as follows:

In the code context, user input is concatenated as part of the template's logic. For example, in a
Jinja2 template, a username can be passed within expression tags (i.e., curly braces "{{ }}"), as
follows:

www.securityboat.net

Identification of Template Engine:
During the identification phase of Server-Side Template Injection (SSTI) testing, it is important to remem-
ber that the payloads may not always yield immediate results in the response. Sometimes, the successful
injection may be reflected in a different context or at a later stage in the application's flow. Let's break
down the identification process into key steps:

Based on the observed rendering of payloads, narrow down the testing to specific template engines that
match the observed behavior.
For example, if the payload #{ 9 * 9 } renders as 81, focus on testing for template engines like freemarker
(legacy), slim template engine in Ruby, Markaby, Erector HAML (older versions), or the PugJS template
engine in Node.js.

Payload
Jinja2 Freemarker(Java) Smarty(PHP) Twig (PHP) ERB(Ruby) Slim (Ruby) Mako

Template Engine

{{9*9}}

${9*9}

<%= 9*9 %>

${{9*9}}

#{9*9}

*{9*9}

[[${9*9}]]

{{9*'9'}}

[=9*9]

81

error/same output

error/same output

$81 / error

error/same output

error/same output

error/same output

999999999

error/same output

{error/same output

81

error/same output

Error/same output

81

error/same output

[[81]] / Error

error/same output

error/same output

81

error/same output

error/same output

$81 / error

#81 / error

*81 / error

[[$81]]/error

81

error/same output

81

error/same output

error/same output

$81/error

error/same output

error/same output

error/same output

81

error/same output

error/same output

error/same output

81

error/same output

error/same output

error/same output

error/same output

error/same output

error/same output

error/same output

error/same output

Error/same output

error/same output

81

error/same output

error/same output

error/same output

error/same output

error/same output

81

Error

$81 / error

error/same output

error/same output

[[81]]

error/same output

error/same output

Initial Payload Testing: Begin by testing potential injection points, such as the username parameter in
a profile. Submit different payloads specific to various template engines through intruder and observe
the response.

 Look for Immediate Results: Check if any of the payloads trigger an error or produce a noticeable
change in the response. This can indicate the presence of a specific template engine.

Check Error Messages: Some applications may provide error messages that disclose information
about the template engine being used. Analyze these messages to identify the template engine.

Analyze Payload Rendering: If immediate results or error messages are not present, closely examine
how the application renders the injected payloads. This requires a creative and flexible approach, as
different template engines may interpret payloads differently.

Compare Payload Output: Compare the output of different syntax payloads with the expected
output. For example, if the payload <%= 9*9 %> renders as 81 in the response, it suggests the presence
of the Ruby ERB template engine.

www.securityboat.net

Once we confirmed the injection point and underlying templating engine, we need to move
forward to escalate our attack beyond the simple arithmetic operation. Now we need to find
objects which are accessible which are essential for escalating the attack. These objects can be
the default objects present in template engine or there are objects which are specific to the
application.

Exploitation

Let us consider an example of SSTI in web application with jinja2 template engine.
In python we have modules like os and subprocess which allows us to run system commands.
So now we need to craft our payload with python code taking advantage of such modules and
gain command execution on the system.

But most template engines will now allow us to import such modules due to security reasons.
In such cases we need to craft payload with the help of built-in methods, functions, filters, and
variables. Using such built-in objects in exploit requires slight understanding of MRO (Method
Resolution Order).

MRO (Method Resolution Order) defines the order in which Python looks for a method in a
hierarchy of classes. When a method is called on an object in Python, the interpreter first
checks if the method is defined in the object's class. If it's not defined in the class, the interpret-
er checks the class's parent class, and so on, until it finds the method or reaches the top of the
hierarchy. In python we have mro() method to list the classes in the MRO of given object or
class.

Method Resolution Order

Exploitaion in Jinja2

www.securityboat.net

Let's delve into the payloads mentioned above, which can enable us to execute code directly on
the server. The "self" keyword refers to the current context object, which is an object containing
accessible data and functions within the current template context.

In Jinja2, _TemplateReference__context is an internal attribute representing the template's
current context. It includes objects such as namespace, cycler, and joiner. By using these objects,
we can access the init method and the global namespace, giving us access to the os module and
the ability to execute commands on the server using the popen method.

Now considering you have found and confirmed SSTI on name parameter in https://vulnera-
ble.com/greet?name={{ 9*9 }}

So, there are two approaches one can take to achieve code execution. In the first approach we
need to craft our payload for RCE by taking advantage of built-ins and MRO and the second
approach involves using the __globals__ attribute to access the global namespace of __init__
method which contains all imported modules including the os module.

Using MRO and built-ins can be advantageous in cases where the global namespace has been
modified or restricted, as it provides access to a wider range of modules and functions. Howev-
er, using the __globals__ attribute of __init__ can be simpler and more direct in cases where the
global namespace is not modified or restricted.

Achieving RCE

RCE using globals and init method of current context object:

The below mentioned payloads will let you achieve RCE:

www.securityboat.net

RCE using mro and base:

1. We can use below mention payloads on injection point to query all the classes and subclasses:

The above mentioned payloads utilizes the built-in datatypes in python to access the class attribute
followed by by mro() or base to access all the subclasses associated with the root object. These payloads
are designed to gather information about class hierarchies and their subclasses in Python. They rely on
specific attributes and methods available in the Python language to retrieve this information dynamically.

2. These payloads will give us the list of available classes. From the list of available classes, we need class-
es like os, subprocess, etc. which can be used to execute system commands.
If using above payloads we are able to see popen method of subprocess or os module then we can pass
in the index position to access the particular method and execute system level commands.

{{''.__class__.mro()[1].__subclasses__()[index_number_of_exploitable_class](‘uname -a ’).communicate()}}
Here we can change the payload syntax and try using different approaches if we are not getting any
results.

We can use the above given payloads if we have
identified that the application is using smarty tem-
plate engine. We can use functions like system,
passthru, shell_exec and exec in PHP which allows us
to execute system commands.

SSTI in Smarty(PHP):

www.securityboat.net

SSTI in Ruby ERB:

Tools

Arbitrary File Read using ERB template injection

The above given payloads are using File.open and Dir.entries method to list the files and
directories on the server.

Remote code execution using ERB template injection

The above given payloads are used to achieve remote code execution if application is
using ruby ERB template engine.

Labs:

SSTIMAP: https://github.com/vladko312/SSTImap
Tplmap: https://github.com/epinna/tplmap

Website Vulnerable to SSTI: https://github.com/DiogoMRSilva/websitesVulnerableToSSTI

Portswigger Labs: https://portswigger.net/web-security/server-side-template-injection/

Tryhackme-SSTI: https://tryhackme.com/room/learnssti

www.securityboat.net

Conclusion:

References:

Template engines are an essential component of many web development frameworks, but they
come with inherent security risks. Because template engines are essentially scripts that execute
on the server-side, they must be treated with the same level of caution as any other script.

They should be treated like scripts and sandboxed which can limit the execution of untrusted
code and prevent attackers from compromising the underlying operating system.

However, if sandboxing is not possible, then access to sensitive functions and objects can be
limited with user permissions. Web developers need to be aware of the risks and take measures
to secure their applications to avoid attacks that can compromise user data.

Best Practices for Prevention:
1.Always validate and sanitize user input before using it in your code. This can help prevent
attackers from injecting malicious code into your application.

2.Use template engine such as Jinja2 and Twig that include a security feature called sandboxing.
This feature prevents untrusted code from executing within templates and helps prevent Server
Side Template Injection (SSTI) attacks

3.Limiting access to critical functions and objects can help prevent attackers from executing
harmful code on the server-side.

4.Prefer logic less template engine like Mustache, Dust.js

• https://portswigger.net/web-security/server-side-template-injection

• https://book.hacktricks.xyz/pentesting-web/ssti-server-side-template-injection

• https://github.com/swisskyrepo/PayloadsAllTheThings/blob/m-

ter/Server%20Side%20Template%20Injection/README.md#server-side-template-injection

www.securityboat.net

www.securityboat.net

SSTI
Handbook

Scan QR Code to Download Handbook

