T SECURITYBOAT

%‘ Frontline Of Your Business

UNRESTRICTED FILE UPLOAD
HANDBOOK

www.securityboat.net

https://securityboat.net/

Table of contents

1. What is Unrestricted File Upload Vulnerability ... 01
2. How do vulnerabilities related to file uploads emerge?..... s ———— 01
3. File UPload ATACK ... s s ssssssssssssssssssssssssssssesnsassssssnssssnsassssnsssas s 02
G 0 I 1 02
3.2 Pixel FIoOd AtacCK.....csssssssss s s s s ssssss s s ss s s 02
KGR T O VA | 0] =T o1 o o 03
G 1 T 03
T Y 0 T2 T TS = 04
4.1 Bypass File Extensions ChecCKS....mmmssssssssssssss s 04
4.2 Bypass Content-Type CheCKS....mmmmmmmmiss s 04
4.3 Bypass Blacklisted EXtENSION....cmmmmsmssss s 04
0 T 1 = T o 05
B RCE. s s e e RN RE SRR RE SR SR SR SR SR SR SR SR SR SR SRR R RS 05
5.2 Overwriting Critical FIleS . sssess 05
5T T 1D 1 1 PP 05
5.4 Web Defacement.....ssssssssssssssssss s 05
5.5 PhiSNING Page....isisssssns s s s ss s s sssssss s ssss st sssss s s s snss s 05
LG o ==Y o 1 0 T 06
7. Additional Resources and References...ssssssssssssssssssssssns 07
71 Unrestricted File Upload Vulnerability.....mm s 07
7.2 File Upload Attack TEChNIQUES......cns s seses 07
7.3 File Upload RestriCtioNS BYPasS . sssssssssssssssssssssssssssssssssasssssssssess 07
7.4 File Upload Attack Prevention. ... sssens 07

o T] T 0o Yo [08

https://securityboat.net/

1. What is Unrestricted File Upload Vulnerability?

File upload vulnerabilities in web applications occur when the application does not properly validate or restrict
the types of files that users can upload. Attackers can exploit this weakness by uploading malicious files, such as
scripts or executable files, which can then be executed on the server. This can lead to various security issues,
including remote code execution, denial of service, or unauthorized access.

Attacker Website Server

o

Compromised System ’

4
f .
Path Traversal CVS Injection 'o
A < . X4
. { I o viscosure) 0os | .
~ .

Open Redirection

I File overwrite | Malicious File Upload ?

L \

2
o
L4

4
4
’
|
~
B =t
a
7]
]
m
|)
)
A
)

Common File Upload Attack Flow

2. How do File Uploads Vulnerabilities emerge?

Despite the evident risks, it's uncommon to find websites in the wild without any restrictions on the types of files
users can upload. Typically, developers implement what they believe to be strong validation mechanisms, which
may either have inherent flaws or can be easily circumvented.

For instance, developers might try to create a blacklist of hazardous file types but overlook parsing discrepancies
when checking file extensions. Like any blacklist, there's also the risk of unintentionally excluding more obscure
file types that could still pose a threat. In other scenarios, websites may attempt to verify the file type by
examining properties that an attacker can easily manipulate using tools like Burp Proxy or Repeater.

In the wild, file upload vulnerabilities can stem from inadequate file type validation, absence of size limits, weak
input validation, improper file permissions, failure to scan for malware, and insufficient authentication or authori-
zation checks. Attackers may exploit these weaknesses to upload malicious files, execute unauthorized actions,
or compromise the system's integrity.

Ultimately, even when robust validation measures are in place, there may be inconsistencies in their application
across the network of hosts and directories that constitute the website. These disparities create openings that
can be exploited by attackers.

@ o1

https://securityboat.net/

3. File Upload Attack

3.1 RCE

Remote Code Execution (RCE) through file upload is a critical security vulnerability that occurs when a website
or application allows users to upload files, and these files are not properly validated or sanitized. In the
worst-case scenario, the system may permit the upload and execution of server-side scripts, such as those
written in PHP, Java, or Python.

To attain remote code execution, the process involves utilizing a PHP, JSP (or any other) shell, uploading it while
circumventing any restrictions, checking accessibility at the specified path, and subsequently attempting shell
execution based on the method of shell execution (web shell, command-line shell).

Attacker Website Compromised System
"
777777 f : shell.php?cmd=whoami
shell.php (| Ywww-data
" | & |
i Upload File |
. = - - -) : uv::ng : ---------) }

Remote Code Execution

3.2 Pixel Flood Attack

A straightforward assault that can be evaluated whenever a file upload feature is enabled for image files. In
a Pixel Flood Attack, the assailant endeavours to upload a file with an excessively large pixel size, causing
the server to exhaust its resources and potentially leading to application crashes. This simplistic method
can result in a denial-of-service scenario at the application level. Many contemporary applications rely on
third-party libraries for processing images, converting them into smaller sizes to conserve storage and
processing resources.

To execute a Pixel Flood Attack, create an image with dimensions of 64,250 x 64,250 pixels, then navigate
to the susceptible application offering image file uploads. Upload the oversized image and monitor the
server's response. If there's a significant delay or if the application becomes inaccessible, verify the issue
on another device. If the lag or accessibility problem persists, it confirms the vulnerability of the application
to a Pixel Flood Attack.

Attacker Website Compromised Server

Image

a>

I mom ' - - -) : Upload File :

64Kx64K

Pixel Flood Attack

@ 02

https://securityboat.net/

3.3 CSV Injection

CSV Injection, also known as Formulae Injection or CSV Excel Macro injection, is a vulnerability typically
observed in the "File Export" feature rather than the "File Upload" functionality. Although there are instanc-
es where an application diligently sanitizes user-provided input, preventing the inclusion of malicious
payloads even with client-side validation bypass, this effectively thwarts potential attacks.

To identify CSV Injection, upload a CSV file embedded with a malicious payload. Next, export the uploaded
content using a different user account within the application. If the application neglects to properly sanitize
the user-provided content during file output, it may leave room for the successful execution of the injection
attack.

Attacker

Website Compromised System

evil.csv
A B C

’ l o 1]1] Payload
ImEm --- -) : Upload File 2 \
| — 3 %
. 4

CSV Injection Attack

3.4 XSS

During the examination of file upload functionality, various methods can be employed to carry out a
cross-site scripting attack. One approach involves uploading malicious files, such as SVG or HTML files,
and altering the file name to incorporate a cross-site scripting payload.

To leverage XSS using an SVG File via Unrestricted File Upload Vulnerability, one should generate an SVG
file embedded with a cross-site scripting payload. Subsequently, access the file upload feature and upload
the crafted SVG file. Either open the SVG file directly or visit the endpoint invoking the SVG file; if the
application possesses the vulnerability, a Cross-Site Scripting execution will be evident.

Attacker Website Compromised System

Z

testphp says
XSS .

alert.svg

Cross Site Scripting Attack

@ 03

https://securityboat.net/

4. Bypasses

While there is a broad range of file upload-related attacks, modern applications concurrently incorporate
varying levels of protection to mitigate or, at the very least, minimize the risk and probability of exploitation.

Attacker Bypassing Restrictions Compromised Server

Payload
4

cmmaEea)

File Upload Bypass Flow

Nonetheless, there exist several methods to circumvent restrictions associated with file upload attacks. The
following are some noteworthy bypass techniques:

4.1 Bypass File Extensions Checks

If the client-side validation is designed to check the filename attribute of the uploaded file as a restriction,
then an attacker can easily bypass it by manipulating the file extension in filename.

Modified Request

POST /upload
Host: vulnerable_target.com

other headers
....content_type=image/png&filename=test.php &data={file_content}

Modify request to Bypass File Extensions Check

4.2 Bypass Content-Type Checks

It is possible to change the content type to mimic the malicious file as one of the allowed file extension
types, resulting in bypassing the restrictions and uploading the malicious files.

Modified Request

POST /upload
Host: vulnerable_target.com

other headers
....content_type= &filename=test.php&data={file_content}

Modify request to Bypass Content-Type Check

4.3 Bypass Blacklisted Extension

If an application is using a blacklist of extension, it is possible to bypass the restriction by trying for similar
extensions with different capitalization or versions. Example:

Blocked File: test.php
Allowed File: test.php3, test.PhP, test.PHp

@ o4

https://securityboat.net/

As with many other vulnerability classes, there is no single answer to
what file upload vulnerabilities can do to a target system. It heavily
depends on the web application code written by developers, on the
web server configuration, as well on the operating system running the
web server. The impact of file upload vulnerabilities generally
depends on few factors:

Factor one: Which aspect of the file the website fails to validate
properly, whether that be its size, type,
contents, and so on.

Factor two: What restrictions are imposed on the file once it has been successfully uploaded. We will
go ahead and have a look at some typical Impact scenarios:

5.1 RCE

In the worst-case scenario, the file's type isn't validated properly, and the server configuration allows cer-
tain types of files (such as .php and .jsp) to be executed as code. In this case, an attacker could potentially
upload a server-side code file that functions as a web shell, effectively granting them full control over the
server.

5.2 Overwriting Critical Files

If the filename isn't validated properly, this could allow an attacker to overwrite critical files simply by up-
loading a file with the same name. If the server is also vulnerable to directory traversal, this could mean
attackers are even able to upload files to unanticipated locations.

5.3 DOS

Failing to make sure that the size of the file falls within expected thresholds could also enable a form of de-
nial-of-service (DoS) attack, whereby the attacker fills the available disk space, overloading the server to
work on client requests.

5.4 Web Defacement

If the web root is not configured properly (allowing an attacker to overwrite existing files), an attacker could
substitute existing web pages with his own content (potentially showing imagery which is conflicting to the
original purpose of the application)

5.5 Phishing Page

Like the example before, an attacker could also go ahead only slightly manipulate an existing page to e.g.
extract sensitive data, sending it to a destination controlled by himself.

@ 05

https://securityboat.net/

Implementing File Upload Security Measures:

File Type Restriction: Restrict the allowed file types to prevent the upload of executables,
3 scripts, and potentially harmful content.

File Type Verification: Confirm that files are not masquerading as allowed types. Verify file
types independently of file extensions to avoid potential security bypasses.

Malware Scanning: Scan all uploaded files for malware using multiple anti-malware
engines, employing signatures, heuristics, and machine learning detection methods for
comprehensive threat detection.

EL

Embedded Threat Removal: Employ Content Disarm and Reconstruction (CDR) to
eliminate possible embedded threats in files like Microsoft Office, PDFs, and images, which may
not be detected by standard anti-malware engines.

o

User Authentication: Enhance security by requiring user authentication before allowing
file uploads, although this does not guarantee the user's machine integrity.

Size and Name Restrictions: Set maximum name length and file size limits, restricting
allowed characters in names, if possible, to prevent potential service disruptions.

Randomized File Names: Randomly alter uploaded file names to thwart attackers
attempting to access files using the originally uploaded name, especially when utilizing Content
Disarm and Reconstruction (CDR).

Secure File Storage: Store uploaded files outside the web root folder to prevent attackers

()
= from executing files through assigned path URLSs.
= Vulnerability Checks: Before uploading, examine software and firmware files for

vulnerabilities to prevent potential security risks.

Simple Error Messages: Display concise error messages without revealing directory
paths, server configurations, or other sensitive information that could be exploited by attackers
for unauthorized access.

1

@ 06

https://securityboat.net/

7. Additional Resources and References

71 Unrestricted File Upload Vulnerability

- https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
- https://portswigger.net/web-security/file-upload

7.2 File Upload Attack Techniques

= https://www.yeswehack.com/learn-bug-bounty/file-upload-attacks-part-1
= https://www.yeswehack.com/learn-bug-bounty/file-upload-attacks-part-2
- https://book.hacktricks.xyz/pentesting-web/file-upload

7.3 File Upload Restrictions Bypass

- https://workbook.securityboat.net/resources/web-app-pentest/unristricted-file-upload

7.4 File Upload Attack Prevention
= https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html

07

https://securityboat.net/
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://portswigger.net/web-security/file-upload
https://www.yeswehack.com/learn-bug-bounty/file-upload-attacks-part-1
https://www.yeswehack.com/learn-bug-bounty/file-upload-attacks-part-2
https://book.hacktricks.xyz/pentesting-web/file-upload
https://workbook.securityboat.net/resources/web-app-pentest/unristricted-file-upload
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html

UNRESTRICTED FILE UPLOAD
HANDBOOK

www.securityboat.net

https://securityboat.net/

