
www.securityboat.net

JWT
JSON Web Token

HANDBOOK

Table of contents

1 Introduction to JWT

2 JWT Structure

3 JWT Algorithms

 HS256

 RS256

4 Common Vulnerabilities in JWT

5 Attacks on JWT

 None Algorithm Attack

 Signature Not Verified Attack.

 Algorithm Confusion Attack

 Brute-forcing Weak Shared Secrets

 Attack Using “kid” Header Field

 Attack Using “jku” Header Field

6 Best Practices for Prevention.

7 Labs

8 Automation

9 Conclusion

10 References

www.securityboat.net

Introduction to JWT?
JWT stands for JSON Web Token and are commonly used in web applications for authentica-
tion and authorization purposes. JWT is an open standard(RFC 7519) for securely exchanging
data between two parties. JWT provides a stateless way of authentication as there is no need
for the server to store session related information for verifying the token.

JWS(JSON Web Signature), JWE(JSON Web Encryption)are related specification that are part
of (JSON Web Token)JWT. JWTs are not really used as a standalone entity. JWS provides a
mechanism for digitally signing the contents of JWT. It ensures the integrity and authenticity
of data. JWE provides a mechanism for encrypting the contents of JWT. It allows for confiden-
tial transmission of sensitive data within a JWT.

JWT

JWS JWE

www.securityboat.net

JWT Structure
The structure of JWT consists of three parts that are the header, payload, and signature. The
header, payload, and signature are concatenated by periods(.) to form a complete JWT
token.

The header consists of information regarding the type of the token and the algorithm that is
used for signing. It is a JSON object encoded in Base64UrI format.

As we see in the above example the algorithm used in the header is HS256 and the type of
token is JWT.

The payload part of the JWT contains the actual information or data that is being transmit-
ted. These data can include things like user Id, username, email address, roles, permissions
or other information to be shared between two parties. It is also a JSON object encoded in
Base64UrI format.

www.securityboat.net

In this example the sub identifies the subject of user which can be a unique identifier, name
represents user’s name, email contains the email address, role contains the user’s role which
can be normal user or admin and exp stands for expiration time in UNIX timestamp format.

The signature is used to identify the integrity and authenticity of the token. The encoded
header and the encoded payload are combined with the secret known only to the server for
creating the signature.

www.securityboat.net

Structure of JWT Token

Sample JWT Token

JWT Algorithms

HS256 that is HMAC(Hash-based message authentication code) combined with SHA256
hashing algorithm is a symmetric cryptographic algorithm. A random, complex and strong
key is generated by the server which is kept secret and is used by both the server to sign the
JWT and the recipient to verify the signature.

The encoded header and payload are concatenated by using a period and SHA256 hashing
algorithm is applied to generate a hash value. The secret key is then used to create an HMAC
by applying HMAC algorithm to the hash value. The HMAC is the signature generated which
is appended to the encoded header and payload to form a complete JWT.

HS256

+

Signature

Signature

Use Secret to Create
Signature

HS256

{
 “alg”: “HS256”
}

{
 “role”: “ADMIN”
}

{
 “alg”: “HS256”
}

{
 “role”: “admin”
}

www.securityboat.net

To verify the signature the recipient decodes the JWT to extract the header and payload. The
same secret key used for signing is used.

HMAC-SHA256 algorithm is applied on the decoded header and payload to recalculate the
HMAC. This recalculated HMAC is compared with the signature provided in JWT and if match
is found the signature is considered valid.

+

Signature

Signature

Original Signature

Use Secret to Verify
Signature

Compare
Computed HMAC
with original
HMAC

{
 “alg”: “HS256”
}

{
 “role”: “admin”
}

www.securityboat.net

RS256
RS256 that is (Rivest-Shamir-Adleman) encryption combined with SHA256 hashing algo-
rithm is an asymmetric cryptographic algorithm. A key pair consisting of a private key and a
public key is generated by the server in which the private key is kept secure, and the public
key is made available to the client or server who need to verify the signature.

This algorithm works by first taking the encoded header and payload which are separated by
a dot. Then SHA256 algorithm is used to create a hash out of them. This hash value is then
encrypted using the private key to create the signature. This signature is then appended to
the encoded header and payload and the complete JWT token is formed.

+

Signature

Signature

Use Private key to sign
header and claim set

{
 “alg”: “RS256”
}

{
 “role”: “admin”
}

{
 “alg”: “RS256”
}

{
 “role”: “admin”
}

Private
key

Sign with RS256

www.securityboat.net

To verify the signature the recipient first retrieves the public key and decodes the JWT to ex-
tract header and payload. Then the SHA256 algorithm is applied to header and payload to
obtain a hash value.

The public key is used to decrypt the signature and obtain the original hash value. This origi-
nal hash value is compared with the hash value that we calculated and if it matches the sig-
nature is considered valid.

+Signature

Use Pubilc Key to Verify

{
 “alg”: “RS256”
}

{
 “role”: “admin”
}

Shared
Pubilc
Key

Verify

x

www.securityboat.net

Common Vulnerabilities in JWT
JWT vulnerability occurs if certain issues are not implemented properly. These issues in-
clude the following:

Insecure Algorithms
If weak or deprecated algorithms are used for signing then it can lead to brute-force attack
or cryptographic vulnerabilities.

Weak Secret Key
If the key used to sign or verify the JWT is weak or easily guessable an attacker may b able
to modify tokens or generate valid tokens.

Information leakage in payload
If sensitive information such as passwords, personal details, or confidential data is included
in JWT, it can be exposed to attackers if token is compromised or leaked.

Token Expiration
If token does not have an expiration time or if token revocation mechanism are not imple-
mented an attacker may be able to expired token for unauthorized access.

Token Tampering
If integrity checks are not properly validated by the server, an attacker can modify the to-
ken’s payload or signature potentially gaining unauthorized access.

Insecure Token Storage
Storing JWT’s insecurely, such as client side storage without implementing proper security
measures can expose them to attacks such as XSS and CSRF.

JWT leakage
If JWT’s are not securely transmitted or stored then can be intercepted, leaked or stolen by
attackers.

www.securityboat.net

Attacks on JWT
JWTs, commonly used in authentication and access control, pose risks to websites and users.
These vulnerabilities often stem from flawed JWT handling within applications. With flexible
JWT specifications, developers have autonomy, yet unintended vulnerabilities can surface
even when using reliable libraries.

Implementation flaws frequently lead to inadequate JWT signature verification, allowing at-
tackers to manipulate token payload values. Trust in the signature heavily relies on the se-
crecy of the server's key. If leaked, guessed, or brute-forced, the attacker gains the power to
generate valid signatures for arbitrary tokens, jeopardizing the entire system's integrity.

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxjM0NTY3ODwI-
wibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.

{
 “typ”:’ jwt”,
 “alg”: “none”
}
{
 “username” : “attacker”,
 “role”:”admin”
}

http://vulnerablesite.com

Welcome, Admin

www.securityboat.net

None Algorithm Attack
The none algorithm attack involves modifying the JWT headers to set the algorithm to none
which indicates that no signature verification is necessary. The signature is stripped or re-
moved from the payload to make it appear as unsigned token.

Example:

We can observe that HS256 algorithm is used and also the signature is present.

www.securityboat.net

If the none algorithm is accepted the attacker will replace the algorithm with none and will
strip the signature. The attacker may also change the isAdmin parameter to true which will
lead to vertical privilege escalation as shown in example below.

www.securityboat.net

Signature Not Verified Attack.
Signature not verified attack refers to the situation where an attacker manipulates the JWT
token to trick the server into accepting the token as valid without properly verifying its signa-
ture.

Example:

www.securityboat.net

We can observe in the example that the user is alice and has the role of the user. This is the
valid token with a signature.
If the attacker replaces the signature with his own arbitrary value and it is not validated by
the server the attacker can change the parameters such as userId to some other user and
role to admin and gain unauthorized access as shown in example below.

www.securityboat.net

The RS256 algorithm uses a pair of private and public key in which the private key is used for
signing and the public key is used for verifying. The HS256 algorithm uses one secret key for
both signing and verifying. If the JWT token uses RS256 and we are able to change the algo-
rithm to HS256 we can confuse the server to use another algorithm and force it to use only
one key for both signing and verifying as HS256 uses only one key.
Example:

In this token RS256 algorithm is used, if an attacker changes the algorithm to HS256 and con-
fuses the server it will force the server to use the same public key for signing and verifying
which can be found on the internet or server’s TLS certificate. The changing of algorithm is
shown as below.

Algorithm Confusion Attack

www.securityboat.net

It is an attack where an attacker attempts to guess or crack a weak secret key used for sign-
ing or verifying JWT’s. This attack exploits the vulnerability of using a weak or easily guess-
able secret such as common password or phrase.
Example:
The JWT token used for brute-forcing is as below

Different tools are available for brute-forcing such as jwt_cracker, jwt_tool which can be
used but here we are using hashcat.
Command: hashcat -a 0 -m 16500

Brute-forcing Weak Shared Secrets

www.securityboat.net

Output: We can observe that the weak secret that is secret1
has been found.

Attack Using “kid” Header Field
In JWT kid stands for Key ID. This field can be added in header of JWT and is used to identify
cryptographic key that was used to sign the JWT or verify its signature. The kid value is a
unique identifier associated with a specific key. In the kid parameter attack the attacker can
modify the value of the kid field. If it is validated by the server, it may associate the wrong key
with the modified kid identifier.
Example:

www.securityboat.net

In this token the attacker modifies the kid parameter to key2 and if it is accepted by the
server then it can mistakenly associate the manipulated key identifier key2 with the wrong
key potentially compromising the integrity of the token.

This is the original token with kid value as key1 and will associate the key identifier key1 with
the appropriate key.

The JKU (JSON Web Key Set URL) header parameter in the JSON Web Token (JWT) is utilized
to indicate the location of the JSON web key set that contains the cryptographic keys. This
JKU parameter plays a crucial role during the verification process, as the server will retrieve
the necessary keys from the specified URL.

Attack Using “jku” Header Field

www.securityboat.net

This is an original token containing a valid jku from which the server will obtain the keys use
to verify the tokens signature.

If the attacker modifies the jku as in the above token to point to the malicious JWK(JSON WEB
KEY) and if accepted by the server the attacker will be able to sign malicious tokens using their
own private key. By doing this the application will fetch the attackers JWK to verify the signa-
ture.

www.securityboat.net

Generate strong and unpredictable secret keys for signing JWTs. Use long and complex
strings to make it harder for attackers to guess or brute force the key.

Ensure that each received JWT is properly validated before trusting its contents. Verify the
signature to ensure integrity and authenticity. Additionally, validate the token's structure,
issuer (iss), audience (aud), and other relevant claims to prevent tampering.

Set a reasonable expiration time for JWTs. Shorter expiration times reduce the window of
opportunity for attackers to exploit stolen or compromised tokens. Consider implementing
token refresh mechanisms to issue new tokens after expiration.

Implement mechanisms to revoke JWTs when they are no longer needed or compro-
mised. This can include maintaining a token revocation list (TRL) on the server side or
using a centralized token revocation service.

Avoid including sensitive or personally identifiable information (PII) directly in the JWT
payload. Instead, store sensitive data on the server side and use a reference or identifier
in the token payload.

Transmit JWTs securely over HTTPS to prevent interception or tampering. Avoid transmit-
ting tokens in URLs, as they may be logged or exposed in browser history.

Implement rate limiting mechanisms to detect and prevent brute force or enumeration
attacks on JWT endpoints. Consider implementing IP blocking or throttling for suspicious
or malicious activities.

Conduct regular security audits and penetration testing to identify vulnerabilities or weak-
nesses in your JWT implementation. Fix any discovered issues promptly.

Best Practices for Prevention.

www.securityboat.net

• Portswigger Labs
• JWT demo Labs

Labs :

Automation

JWT Tool is the one that we use for automation. JWT Tool is a Python toolkit for validating, forg-
ing, scanning, and tampering with JWT tokens.

• JWT Tool

JWT editor is a BurpSuite extension through which we can edit, sign, verify, encrypt and de-
crypt a JWT token.

• JWT Editor

Json Web Token is a BurpSuite extension which allows you to manipulate the JWT token on the
fly that is by intercepting the request we can directly manipulate the token and forward the
request.

• JSON WEB TOKENS

www.securityboat.net

JSON Web Tokens (JWTs) are widely used for authentication and authorization in web appli-
cations. However, vulnerabilities associated with JWTs can lead to various attacks, including
none algorithm attacks, signature not verified attacks, algorithm confusion attacks, and
more. These vulnerabilities can arise from insecure algorithms, weak secret keys, information
leakage in the payload, token tampering, and insecure token storage.

To address these vulnerabilities and enhance the security of JWTs, it is crucial to follow best
practices such as using secure algorithms, generating strong secret keys, avoiding sensitive
information in the payload, implementing token expiration, validating signatures and claims,
storing JWTs securely, and protecting against token leakage.
By implementing these measures, developers can minimize the risks associated with JWT
vulnerabilities and improve the overall security of their web applications. It is important to
stay updated with the latest security guidelines and regularly assess and enhance security
measures to mitigate potential threats.

 Conclusion:

OWASP - Testing JSON Web Tokens
Portswigger JWT attacks
jwt.io
auth0 Get Started with JSON Web Tokens

References:

www.securityboat.net

JWT
JSON Web Token

HANDBOOK

www.securityboat.net

Scan QR Code to Download Handbook

